A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.
نویسندگان
چکیده
Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. Although it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends on whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model, wherein the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in-vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (approximately 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (approximately 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (approximately 1 Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (approximately 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations.
منابع مشابه
Piezoelectric lithotripsy and soft tissue injury. Safety limits in the experimental and clinical setting.
Controversy surrounds the capacity of extracorporeal shock wave lithotripsy to cause soft tissue injury. This study examines the influence of different dosages of shock waves on the gall bladder in both humans and an animal model. Sixty one guinea pigs were divided into groups and subjected to different numbers of shock waves (6,000, 24,000, and 48,000) at different frequencies (2.5, 5.0, 10, 2...
متن کاملThe acute and long-term adverse effects of shock wave lithotripsy.
Shock wave lithotripsy (SWL) has proven to be a highly effective treatment for the removal of kidney stones. Shock waves (SWs) can be used to break most stone types, and because lithotripsy is the only noninvasive treatment for urinary stones, SWL is particularly attractive. On the downside SWL can cause vascular trauma to the kidney and surrounding organs. This acute SW damage can be severe, c...
متن کاملShock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective...
متن کاملShock wave induced damage in kidney tissue
In a common medical procedure known as shock-wave lithotripsy hypersonic waves are generated and focused at the kidney stone. These shock waves are thought to fragment the stone but also lead to injuries of the kidney tissue. To predict and estimate this damage we develop here a mechanical model for the response of soft tissue to the exposure of shock waves. The material model combines shear in...
متن کاملDamage Potential of the Shock-induced Collapse of a Gas Bubble
Numerical simulations are used to evaluate the damage potential of the shock-induced collapse of a pre-existing gas bubble near a rigid surface. In the context of shock wave lithotripsy, a medical procedure where focused shock waves are used to pulverize kidney stones, shock-induced bubble collapse represents a potential mechanism by which the shock energy directed at the stone may be amplified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2007